
EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Distributed version control
CS-214 - 13 Nov 2024
Clément Pit-Claudel

Le re
tour

du G
it

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Quick
announcements

Webapp lecture
is up as a literate program

RPS lab & Git II exercises
Released tonight

Unguided lab teams
are due this Friday

Exam grades
Soon™

Team-finding session
Friday 9-10AM in CO 021

RPS tests
Are integration tests!

https://cs-214.epfl.ch/labs/webapp-examples-2d859dd07e39/memory.html

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

RPS lab:
(Complex) integration tests
● Multiple functions

● Indirect tests (views+events)

test(“play once”):
 val st = transition(
 init(UIDS), Move(0, 1))
 val vw = project(st)(UID0)
 assertEq(vw.playerId, UID1)
 (0 to 3).forall: r =>
 (0 to 3).forall: c =>
 assert(…vw.board(r, c)…)
)

How do you test code without overspecifying it?

Most other labs:
Unit tests or simple integration
● One function at a time

● Single input, single output

test(“play once”):
 assertEq(
 update(State(…), 0, 1),
 State(board = …,
 playerId = UID1)
)

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

RPS lab:
(Complex) integration tests
● Multiple functions

● Indirect tests (views+events)

test(“decode-encode”):
 assertEq(
 xyz,
 decode(encode(xyz))
)
)

How do you test code without overspecifying it?

Most other labs:
Unit test
● One function at a time

● Single input, single output

test(“encode”):
 assertEq(
 encode(…),
 Obj(“abc” -> …, “def” -> …)
)

● Will this work if you use arrays or classes instead
of Vectors and case classes?

● What kind of bugs will this fail to catch?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Tips to be successful in the unguided lab

● For webapp-rps
○ Do the exercises
○ Look around webapp-lib too! (Wires.scala)
○ Write your own tests

● For the unguided lab
○ Don’t skip webapp-rps
○ Review Monday’s lecture
○ Plan and communicate (plan first, code second)
○ Need proposal tips? Ask in person

https://gitlab.epfl.ch/cs214/ul2024/webapp-lib

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Practice: Design an online card game

● States
Playing, Finished
+ Game-specific (Jass: Bidding, Tarot: Écart…)

● Transition function
Playing → Playing, Playing → Finished
+ Game-specific ones (Bidding → Playing…)

● Events
Bid, Pass, PlayCard

● Views
Game phase, individual hand

● Projection function
Hide other players’ cards

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Practice: Design an online card game

● States
Playing, Finished
+ Game-specific (Jass: Bidding, Tarot: Écart…)

● Transition function
Playing → Playing, Playing → Finished
+ Game-specific ones (Bidding → Playing…)

● Events
Bid, Pass, PlayCard

● Views
Game phase, individual hand

● Projection function
Hide other players’ cards

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

App suggestions for the unguided lab
The following would all make for reasonable webapps to build in a team of three or four.
Be creative! Let’s not have 50 clones of chess, please.

● Turn-based board games: Games with geometric boards, such as memory, reversi,
go, etc. work best, because they have simple UIs. Card games work great too,
especially if you don’t overthink the UI (emojis work great:
♣♠♥♦🃏♠♥♦♣♤♡♢♧🂱🂲🂳🂴🂵🂶🂷🂸🂹🂺🂻🂼🂽🂾🂡🂢🂣🂤🂥🂦🂧🂨🂩🂪🂫🂬🂭🂮🃁🃂🃃🃄🃅🃆🃇🃈🃉🃊🃋
🃌🃍🃎🃑🃒🃓🃔🃕🃖🃗🃘🃙🃚🃛🃜🃝🃞🂠🃏🃟).

● Adventure games: Interactive fiction and roguelikes (e.g.) work best. Make sure that
your game is meaningfully multiplayer, and don’t spend all your time on the art.

● Productivity and planning: Task lists, shopping lists, apartment chores schedulers,
restaurant bill splitters, real-time voting and quiz apps, personal calendars, party
planners, trip planners, tournament planners…

● Sharing and collaboration: Private photo albums, book clubs, collaborative
music/art/dance/theater/… apps, flashcards for collaborative study, neighborhood
borrow/exchange/buy/sell/give away platforms…

https://en.wikipedia.org/wiki/Interactive_fiction
https://en.wikipedia.org/wiki/Roguelike
https://en.wikipedia.org/wiki/NetHack

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

● Single-user git recap
● Distributed Git basics

○ Remotes
○ Fetching
○ Branches

● Managing short-term
divergence
○ Patches
○ Cherry-picks
○ Rebases

● Managing long-term
divergence
○ Branching

● Handling conflicts
○ 3-way diffs
○ Conflict resolution

Today:

Distributed
version control

Learning objective:

Handle divergence between
codebases and resolve

conflicts

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

git help
git config
mkdir
sbt new scala/scala3.g8
git init
git status
git add
git restore
git commit -m
git log
git show
.gitignore
git commit –amend
git tag -m “…”
git clone
git format-patch
git shortlog --since
git blame
git log -L

Single-user Git
recap

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

The problems with backups

- No meaningful changesets

- Too-large or too-small granularity

- Limited history browsing capabilities

- Limited support for asynchronous collaboration

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

The solution? Use a VCS!

Version Control Systems (VCSs), or
Source Code Management systems (SCMs) are for:
- Tracking the evolution of text or code ← today
- Managing versions, distributed development ←next

time
But not directly for:
- Bug tracking, code review, ← next year
- Testing, CI, deployment ← mostly next year

Git ≠ Github / Gitlab

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Version control is labeled backups

Software
development
with a VCS

Write code

Review
changeset

Save
snapshot

Write
description

Debug

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Version control is distributed, labeled backups

Software
development
with a VCS

Write code

Review
changeset

Save
snapshot

Write
description

Debug

Software
development
with a VCS

Write code

Review
changeset

Save
snapshot

Write
description

Debug

Software
development
with a VCS

Write code

Review
changeset

Save
snapshot

Write
description

Debug

Software
development
with a VCS

Write code

Review
changeset

Save
snapshot

Write
description

Debug

Software
development
with a VCS

Write code

Review
changeset

Save
snapshot

Write
description

Debug

Software
development
with a VCS

Write code

Review
changeset

Save
snapshot

Write
description

Debug

Software
development
with a VCS

Write code

Review
changeset

Save
snapshot

Write
description

Debug

Software
development
with a VCS

Write code

Review
changeset

Save
snapshot

Write
description

Debug

Software
development
with a VCS

Write code

Review
changeset

Save
snapshot

Write
description

Debug

Software
development
with a VCS

Write code

Review
changeset

Save
snapshot

Write
description

Debug

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Distributed Git
basics

● remotes

● fetching

● branches

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

4 important concepts

● “remote”
git remote -v
Another Git repository that you track

● “fetching”
git fetch
Retrieving all commits from a remote

● “branches”
git branch, git checkout, git switch
Labels on specific commits

● “rebase/merge”
git am, git cherry-pick, git rebase, git merge
Transferring code across branches pull == fetch + merge

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Source of divergence

● Individual contributions happening at the same
time

● Requirements of code review / quality
processes
Most projects, even this class!

● Long-time testing / evaluation of new features
Testing different approaches

● Maintenance of older releases / LTS support
Python 2 / 3, most projects have a next branch

● Long-lived forks / parallel development
Edge / Chromium

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Risks of divergence

● Bitrot (code going stale)

● Complex merging

● Hard to use multiple unmerged features at once

● Uneven application of bugfixes

Today’s lesson: Tools to
deal with these issues!

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Short-term
divergences

● Patches

● Cherry-picks

● Rebases

All illustrations taken from the
Git book, which you should read!

https://git-scm.com/book/en/v2/

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Patching / cherry-picking

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Rebasing

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Long-term
divergences

● Branch workflows

● Merging

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Simple merges

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Long lived branches and stability workflows

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Dealing with
conflicts

● 3-way diffs

● Resolving conflicts

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel https://xkcd.com/1597/

https://xkcd.com/1597/

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Key configuration setting

git config --global merge.conflictstyle diff3
(or)

git config --global merge.conflictstyle zdiff3

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

At-home topics
(on your own)

● SSH keys

● GPG signatures

● Octopus merges

● git range-diff

● git send-email

● git request-pull

● git rerere

